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Problem Statement:

1 Linear Least Square

Given an m by n matrix A and an m by 1 vector b, the linear least squares
problem is to find an n by 1 vector x minimizing ||Ax− b||2. If m = n and
A is nonsingular, the answer is simply x = A−1b. But if m > n so that we
have more equations than unknowns, the problem is called over-determined, and
generally no x satisfies Ax = b exactly. One occasionally encounters the under-
determined problem, where m < n, but we will concentrate on the more common
over-determined case. Let us begin with two types of linear regression problems:
the polynomial regression & statistical modeling via regression (there is also the
K-Nearest Neighbor Regression).

1.1 Polynomial Regression

Suppose that we have m pairs of numbers (y1, b1), · · · , (ym, bm) and that we want
to find the best cubic polynomial fit to bi as a function of y. This means finding
polynomial coefficients xl, · · · , x4 so that the polynomial

f(y) =
4∑

j=1

xjy
j−1 (1)

minimizes the residual ri = f(yi) − bi for i = 1 · · ·m. We can also write this as
minimizing

r =


r1
r2
...
rm

 =


f(y1)
f(y2)

...
f(ym)

−


b1
b2
...
bm


This implies

r =


1 y1 y21 y31
1 y2 y22 y32
...

...
...
...

1 ym y2m y3m




x1
x2
x3
x4

−


b1
b2
...
bm


r = Ax− b

One frequently uses ||Ax− b||2 which corresponds to minimizing the sum of the
squared residuals

∑m
i=1 r

2
i , is a linear least squares problem.
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1.2 Regression in Statistical Modeling

Suppose that we are doing medical research on the effect of a certain drug on blood
sugar level. We collect data from each patient (numbered from i = 1, 2 · · · ,m) by
recording his or her initial blood sugar level (ai,1), final blood sugar level (bi), the
amount of drug administered (ai,2), and other medical quantities, including body
weights on each day of a week-long treatment (ai,3 through ai,n). In total, there
are n < m medical quantities measured for each patient. Our goal is to predict
bi given ai,1 through ai,n and we formulate this as the least squares problem:
minimize ||Ax− b||2. We plan to use x to predict the final blood sugar level bj
of future patient j by computing

bj =
n∑

k=1

ajkxk

1.3 Normal Equation

To derive the normal equations, we look for the x where the gradient of ||Ax− b||22
vanishes. Prove that the normal equation is given by ATAx = ATb. Why is
x = ATA

−1
ATb is the minimizer of ||Ax− b||2?

2 Bias and Variance

Understanding how different sources of error lead to bias and variance helps us
improve the data fitting process resulting in more accurate models. We first define
bias & variance conceptually.

2.1 Conceptual Definition

Error due to Bias: The error due to bias is taken as the difference between the
expected (or average) prediction of our model and the correct value which we are
trying to predict. Of course you only have one model so talking about expect-
ed or average prediction values might seem a little strange. However, imagine
you could repeat the whole model building process more than once: each time
you gather new data and run a new analysis creating a new model. Due to ran-
domness in the underlying data sets, the resulting models will have a range of
predictions. Bias measures how far off in general these models’ predictions are
from the correct value.

Error due to Variance: The error due to variance is taken as the variability
of a model prediction for a given data point. Again, imagine you can repeat
the entire model building process multiple times. The variance is how much the
predictions for a given point vary between different realizations of the model.
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2.2 The Intuition on Bias–Variance Trade-off

Suppose that we have a (training) data set

S = {(y1, b1), · · · , (ym, bm)}

The goal in learning is not to learn (developed a model) an exact representation
of the training data itself, but to build a statistical model of the process which
generates the data. We will see in the case of polynomial regression that:

• models with too few parameters can perform poorly

• models with too many parameters can perform poorly

Need to optimize the complexity of the model to achieve the best performance.
One way to get insight into this tradeoff is the decomposition of generalization
error into bias2 + variance:

• a model which is too simple, or too inflexible, will have a large bias (high
bias means a poor match).

• a model which has too much flexibility will have high variance (a high
variance means a weak match).

We would like to minimize each of these. Unfortunately, we cannot do this
independently, there is a trade-off.

2.3 Bias-Variance Analysis in Regression

Consider you have a data set S with 500 pairs of (yi, bi). You can generate these
pairs from the function b = f(y) + ε i.e.

b = y + 2 sin(1.5× y) + ε, ε ∈ N(0, 0.02), y ∈ [0, 10]

where N(0, 0.02) is a normal distribution with zero means and σ = 0.02. Here
the true function is f(y). We would like to develop or estimate a model h(y) of
f(y).

Construct five sample S1, S2 · · · , S5 each Si has 50 pairs generated randomly
(with replacement) from S. For each data set Si construct a polynomial model
of degree p i.e.

h(y) =

p∑
j=1

xjy
j−1. (2)

The optimal x is what minimizes ||Ax− b||2.
Now that we have a model h(y), given any new data point y∗ (with observed

value b∗ = f(y∗) + ε, the pairs (y∗, b∗) are in S and not in any of Si), we would
like to understand the expected prediction error

E
[
(b∗ − h(y∗))2

]
(3)
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Equation (3) can be decomposed into Bias2, Variance and Irreducible error. We
now consider the bias-variance calculation.

Select a set Ŝ of pairs from S that do not belong to any of the Si. Hence
for each pair (yi, bi) ∈ Ŝ there are predictions from five models. Hence calculates

E
[(
h(y)− ¯h(y)

)2]
or E

[
(h(y)− E [h(y)])2

]
(Variance) and

( ¯h(y)− f(y)
)2

or

(E [h(y)]− f(y))2 (Bias2). Repeat the process for p = 1, 2 and 3 and compare
the bias and Variance for each p.

4


